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ABSTRACT

The point placement problem is to determine the locations of a set of distinct points

uniquely (up to translation and reflection) by making the fewest possible pairwise distance

queries of an adversary. Deterministic and randomized algorithms are available if distances

are known exactly.

In this thesis, we discuss a 1-round algorithm for approximate point placement in the

plane in an adversarial model. The distance query graph presented to the adversary is

chordal. The remaining distances are uniquely determined using the Stochastic Proximity

Embedding (SPE) method due to Agrafiotis, and the layout of the points is also generated

from SPE. We have also computed the distances uniquely using a distance matrix completion

algorithm for chordal graphs, based on a result by Bakonyi and Johnson. The layout of the

points is determined using the traditional Young- Householder approach. We compared the

layout of both the method and discussed briefly inside.

The modified version of SPE is proposed to overcome the highest translation embedding

that the method faces when dealing with higher learning rates.

We also discuss the computation of molecular structures in three-dimensional space, with

only a subset of the pairwise atomic distances available. The subset of distances is obtained

using the Philips model for creating artificial backbone chain of molecular structures. We

have proposed the Degree of Freedom Approach to solve this problem and carried out our

implementation using SPE and the Distance matrix completion Approach.
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CHAPTER 1

Introduction

A prototypical problem for point placement problem and the graph embedding is given by

Saxe [25]. The problem states that: Given an incomplete edge-weighted graph G and a

parameter k, map the vertices of the graph G to the points in a Euclidean k-space in such a

way for any two vertices connected by an edge, its edge weight is equal to the corresponding

points in the k-dimensional space. Deciding if such an embedding exists is strongly NP-

complete [25].

Saxe also proved that the problem is NP-complete even when the embedding dimension

is 1 and the edge weights are restricted to values in the set 1,2.

1.1 Point Placement Problem in 1D

The point placement problem on a line is the problem of locating n distinct points on a line

up to translation and reflection in adversarial settings. This is a 1-dimensional version of

Saxe’s problem. The queries can be made in one or more rounds and are modeled as a graph

whose nodes represents the points, and there is an edge connecting two points if the distance

between the corresponding points is being queried. A prototypical 1-round algorithm uses

the line-rigid 3-cycle (or triangle) graph (Fig.1) as the core structure and constructs the

distance graph on n points.

Let P = {p1, p2, ...pn} be n distinct points on a line. A distance graph with n vertices

1
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that has edges joining the pairs of points whose distances are returned by the adversary. The

distances returned by the adversary are assumed to be valid if there exists a linear layout

consistent with these lengths. The distance graph is said to be line-rigid if a consistent layout

exists for all valid adversarial assignments of lengths. [21]

p0 p1

pn−1

p2

FIGURE 1: Distance graph for a 1-round algorithm

The best-known 2-rounds algorithm for point placement on a line is due to Alam and

Mukhopadhyay [3] that makes 9n/7 queries and has a query lower bound of 9n/8.

1.2 Point placement problem in 2D

The point placement problem on a plane is to determine the location of a linear set of points

{p1, p2, p3...pn} up to translation and reflection on the plane by making the fewest possible

pairwise distance queries to an adversary. This is a 2-dimensional version of Saxe’s problem.

In this thesis, we are proposing an algorithm for the point placement problem on a

plane based on Stochastic Proximity Embedding (SPE). A chordal graph is submitted to the

adversary as a distance query graph, while the remaining distances in the query graph are

uniquely determined using Stochastic Proximity Embedding (SPE). SPE also generates the

layout of the points while completing the partial distance matrix.

2
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1.3 Point placement problem in 3D

The Molecular Distance Geometry Problem (MDGP) is defined as the problem of finding the

cartesian coordinates of the atoms in a molecule, with only a subset of pairwise interatomic

distances available. This is a 3-dimensional version of Saxe’s problem. The MDGP arises

in NMR experimental techniques that provides a set of inter-atomic distances dij for certain

pairs of atoms (i, j) of a given molecule.

The MDGP can be formulated as follows: A unique three-dimensional structure of a

molecule is to be determined when the distances between all pairs of atoms in a molecule are

available. However, when there are errors or unavailability of certain distances the unique

structure of the molecule may not exist. Here we are approaching the problem, with only a

partial set of interatomic distances available.

1.4 Motivation

The abstract version of point placement problem appears in diverse areas of research, such as

Wireless Sensor Networks (WSNs), Computational Geometry, Computational Biology and

Learning Theory [21].

Localization of sensor nodes has been an active research area in WSNs. Finding the

position of nodes is a vital requirement in many WSNs applications including tracking,

geometric routing, and monitoring [4]. Distances between the sensors are calculated by

measuring the power used between the sensors for two-way communications. Most of the

localization techniques are making use of the section of nodes that has prior knowledge of

their absolute positions. Such nodes are called anchor nodes. With the position of the anchor

nodes known, the localization problem is solved in the Wireless Sensor Networks (WSNs)

provided all other unknown distances are determined.

In the area of Computational Geometry, the version of the point placement problem is

3
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known as the turnpike problem. The problem description is as follows. In an expressway

from city A to city B, several ONroute exists; the distances between all pairs of ONroute are

known. With the know distances between the ONroutes, the geometric location of this route

is fixed. This problem was initially studied by Skiena et al. [27] who proposed a practical

heuristic for the reconstruction. A polynomial time algorithm was given by Daurat et al. [10].

In the area of Computational Biology, the 3D structure of a molecule can be determined

by solving the Molecular Distance Geometry Problem (MDGP) [9]. A molecule is represented

in a three-dimensional space by a set X. Each point xi in the set X is represents an atom

in the molecule. Some of the distances between atoms are determined by Nuclear Magnetic

Resonance (NMR) spectroscopy. By exploiting such distances, the coordinates of the atoms

in a molecule are determined by solving the corresponding Distance Geometry Problem. [13]

1.5 Preliminaries

Let D = [dij] be a symmetric matrix of size n × n and d(pi, pj) be the Euclidean distance

between the points pi and pj. The symmetric matrix is said to be Euclidean distance matrix

if the points p1, p2, ...pn lies in some k-dimensional Euclidean space such that dij = d(pi, pj)
2.

The diagonal entries in the matrix are zero and the off-diagonal entries are filled with Eu-

clidean distances [23].

Let G = (V,E) be a graph, where V is the set of vertices and E is the edges. G consists

of a finite set of vertices {v1, v2, ...vn} and a set of edges {{vi, vj}, i 6= j} joining some pairs

of vertices. A path in the G is a sequence of vertices vi, vi+1, . . . , vk, where {vj, vj+1} for

j = i, i+ 1, . . . , k− 1, is an edge of G. A cycle is the closed path in the graph and the size is

the number of edges in the path. A chord is an edge joining two non-consecutive vertices in

a cycle. A graph G is said to be chordal if it has no chordless cycles of size 4 or more. [23]

The distance graph of a n × n distance matrix, is a graph on n vertices with an edge

4
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connecting two vertices vi and vj if there is a non-zero entry in the ith row and jth column

of the distance matrix. [23]

In a graph G, the neighbourhood of a vertex v are those vertices in G that are adjacent

to v. If the neighbourhood N(v) of a vertex is clique then the particular vertex is said to be

a simplicial vertex. A simplicial ordering of the vertices of G is a map α : V → {1, 2, . . . , n}

such that vi is simplicial in the induced graph on the the vertex set {vi, vi+1, . . . , vn}. [23]

1.6 Stochastic Proximity Embedding (SPE)

Stochastic Proximity Embedding (SPE) is the main tool we are using here to solve the point

placement problem in 2-dimensional and 3-dimensional spaces.

SPE is a self-organizing algorithm that attempts to generate the Euclidean embedding

that best preserves the similarities from the original embedding. SPE starts with a random

initial configuration and refines it by iteratively selecting a random pair of points. This refine-

ment starts adjusting the coordinates so that their distances on the map match more closely

with their respective proximities. The adjustment is driven by the learning-rate parameter

λ that decreases during simulation to avoid the oscillatory behavior. The main advantage

of SPE is SPE scales linearly with respect to sample size and can be applied to the huge

data sets unlike the well-known dimensionality reduction techniques like multidimensional

scaling(MDS) and nonlinear mapping(NLM). [1]

Converting distances to coordinates is the prevalent theme in Distance Geometry prob-

lem. The prototypical example of this problem comes from the field of cartography. Intercity

distances are given in the form of a matrix; the aim is to place the cities on a two-dimensional

map that reflects their true geographical coordinates. The main idea of this problem is to

arrange a set of objects in space to reproduce the observed distances between them.

Let P = p1, p2, ...pn be a set of n points in a given plane and R = [rij] is a symetric matrix

5
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shows the relationship between these objects. let P r = p1
a, p2

a, ...pn
a be the random initial

point set produced by SPE, and the D = [dij] is a distance matrix showing the relationship

between the random point set. The distance matrix R can either be a partial or complete

distance matrix. SPE can produce the final embedding even when the distance between the

points are not fully available.

Algorithm 1 SPE

Initialize the coordinates of P r and select an initial learning rate λ
for (C cycles) do
for (S steps) do
Select a pair of points, pai and paj , at random and compute their distance dij = ||pai − paj ||.
if (dij 6= rij) then

pai ← pai + λ1
2

rij−dij
dij+ε

(pai − paj ), ε 6= 0

paj ← paj + λ1
2

rij−dij
dij+ε

(paj − pai ), ε 6= 0

end if
Repeat Step 2 for a prescribed number of steps, S
Decrease the learning rate λ by prescribed decrement δλ
Repeat Steps 2-4 for a prescribed number of cycles, C

Stochastic Proximity Embedding has two cycles, the outer cycle is the learning cycle,

and the inner cycle picks up the points randomly from the set P r and applies the Newton-

Raphson Root finding style of correction to the randomly picked points. SPE is controlled

by three parameters: number of steps S, the learning rate parameter λ (C Cycles) and the

term ε. The learning rate parameter λ starts with 1 and decreases over time to a final value

0.

The decrement of the λ value forces the update rule to take more or less the full Newton-

Raphson steps at the initial cycles and control the magnitude of the updates for the better

embedding; this prevents the oscillation of the updating algorithm. The ε value is chosen to

be the smaller value and add with dij to avoid the division by 0 if points i and j happen to

coincide.

Iteration steps of the algorithm are C*S, where C is the steps for the learning cycle, and

6
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S is the number of times a random point is selected from the point set P r. The parameter C

and S are set so that CS = o(n2), as the quadratic running times of similar algorithms based

on Multi-Dimensional Scaling (MDS), Principal Component Analysis (PCA). The algorithm

designers have empirically determined that the algorithm scale linearly with the number

of data points. To achieve a practically perfect embedding, it takes 10,000 total pairwise

refinements per data point.

The quality of the embedding is measured by the stress function, the stress function is

minimized with the course of the refinement:

S =
Σi<j

(dij−rij)2
rij

Σi<jrij

1.7 Thesis Organization

This thesis is organized in the following manner, a small description of the content in four

chapters that makes up the thesis.

• Chapter 2 gives a brief review of the Point placement on a line problem and dis-

cusses the motivation to study the point placement in the plane problem. After the

introduction to Sensor Network Localization, ’Distance matrix completion approach’

is reviewed, and a detailed description of our algorithm using SPE is discussed. Our

modified version of SPE is discussed to overcome the embedding in highest transla-

tion that SPE faces during algorithm execution. At last in the experiments section,

the comparison between Distance Matrix Completion Approach Vs. SPE with Partial

matrix Vs. SPE with complete matrix is analyzed.

• Chapter 3 introduces the Molecular Distance Geometry Problem (MDGP) and our al-

gorithm using SPE and DMCA to solve the MDGP. This chapter discusses the artificial

instance creation based on Philips model. We have proposed the Degree of Freedom

7
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approach to reconstruct the chain of a protein molecule with partial distances. Our

approach towards solving the MDGP using DMCA and SPE is explained in detail.

MD-Jeep software proposed by Lover et al. [19] is reviewed, and the comparison re-

sults between MD-Jeep and the DMCA + SPE Approach is also discussed in the

experimentation section.

• Chapter 4 summarizes the topics discussed in this thesis and suggests some open prob-

lems that can be taken as a research interest in near future.

8
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CHAPTER 2

Point Placement Problem on a Plane

2.1 Introduction

The point placement problem on a plane is to determine the location of a linear set of points,

{p1, p2, p3...pn} on the plane by making the fewest possible pairwise distance queries to an

adversary. The placement is fixed up to translation and reflection.

The main motivation behind this problem is to fix the sensor network localization. Sensor

networks have some nodes with their distances known, and other nodes with the unknown

distances. Now the problem is to fix the whole system using the available distances between

the nodes and the fixed nodes called anchor nodes [5].

2.2 Motivation

The current approach to the point placement on a line needs testing a large number of

distance constraints; these constraints involve the edge lengths of a distance graph. If integer

coordinates are used; we can avoid this problem of rounding errors; however for the point

placement on a plane this problem is unavoidable even if the coordinates are integral. Thus

we are using a distance matrix completion approach to avoid the problem of testing distance

constraints.

The main motivation behind the study of the point placement on a plane problem is to

9
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avoid the layer graph construction approach used for the point placement problem on the

line. The layer graph concept used in the point placement on a line is discussed below,

A prototypical 1-round algorithm constructs the following distance graph on n points

(Fig. 2) by using the line-rigid 3-cycle graph or a triangle as a core structure. As the figure

shows that, the graph has n − 2 triangles hanging from a common strut. The number of

distance queries made is 2n− 3

p0 p1

pn−1

p2

FIGURE 2: Distance graph for a 1-round algorithm

The distance graph can be re-drawn orthogonally, such re-drawn graph with satisfying

following conditions is called layer graph. The concept of layer graph is first introduced

by Chin et al. They also proved that a given distance query graph is not line-rigid iff it

has a layer graph drawing in [8]. Layer graph is also used to obtain the rigidity conditions.

Conditions to satisfy to be a layer graph:

1. All the edges in the graph G should be parallel to one of the two orthogonal directions

x and y

2. The length of an edge e is the distance between the corresponding points on the distance

graph L

3. The edges in the graph should not be in a single direction

4. No two vertices coincide if the layer graph is folded onto a line, by a rotation either to

the right

10
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Mukhopadhyay et al. [21] showed that the rigidity conditions are easy to verify when exact

arithmetic is used in the implementation of the 2-rounds algorithm. Since the adversary is

simulated by us, the distances returned are set to be integral. There is a possibility of

rounding errors if the pairwise distances are not integral. Checking the rigidity conditions

can be difficult because of the rounding errors introduced in finite-precision calculations.

The approach proposed in this thesis is susceptible to generalization in higher dimensions,

where there are difficulties in generalizing the current approach to two or three dimensions

because of finding the suitable generalization of the layer graph concept and the theorems

associated with it.

2.3 Reductionist Approach

Though it is difficult to generalize the layer graph constructions in the point placement on

the line problem, reductionist approaches can be used to solve the point placement on a

plane problem by solving the point placement on the line problem. We discuss two such

reductions below,

Points on a two-dimensional integer grid

Consider the points p1, p2, p3, ...pn lie on an integer grid as shown in the figure below (Fig.

3). Now we can reduce the point placement on a plane problem to the point placement on

a line by projecting them on x and y axis. An important assumption is that no two points

lie on the small vertical or horizontal line of the grid, to make sure that we have a distinct

set of points in a line.
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p1

p2

p3

p4

p5

p6

x− axis

y − axis

FIGURE 3: Points on a two-dimensional integer gird

Stereographic projection of points on a circle

When points p1, p2, p3, ...pn lie on a circle, we can use stereographic projection on the circle

and plot the points on the line; now we can solve the problem by applying the 1-Dimensional

point placement algorithm to the projected points.

O

pi

pj

p′i p′j

FIGURE 4: Stereographic projection of points on a circle

Stereographic projection is a mapping function that projects a sphere onto a plane. The

projection is defined on entire sphere except for one point where the projection is defined [29].

In the above figure (Fig. 4), the projection of a sphere is taken place from the point O, which
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is the highest point in the sphere.

2.4 Prior Work

2.4.1 Sensor Network Localization Problem

Computing the locations of the nodes in a sensor network is known as the sensor network

localization problem. There are existing algorithms proposed to determine the location of

the nodes in a network by only knowing the location of fewer nodes. Such fixed nodes are

called beacon nodes. When the location of the fewer nodes are fixed, then other nodes try

to measure the distance between neighbors and fix their locations. Though algorithms exists

to find the location of the nodes, some fundamental questions were not addressed.

The theory of network localization proposed by Aspnes et al. [5] has some theoretical

proof to answer the basic questions in network localization. The main underlying idea in

this paper is this: grounded graphs are constructed to model the network localization and

the rigidity theory for graphs were used to test the conditions for unique localizability. Now

the unique networks were constructed using the rigid grounded graph.

The notion of grounded graphs is proposed in this paper [5] to solve the unique network

localizability. In grounded graphs, each vertex represents network nodes. If the distance

between two nodes is known, or the nodes are beacon nodes, then the corresponding vertices

are connected. With the construction of the grounded graphs, the network has a unique

localization if and only if its corresponding ground graph is generically globally rigid. To

check if a network in the plane is unique localizable, we just need to check if the corresponding

grounded graph is redundantly rigid and 3-connected.

The computational complexity of the network localization has been shown as NP-hard

when the grounded graph is generically globally rigid via reduction from set-partition.

The trilateration graph is also explored in this paper to study the complexity of network
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localization. Aspens et al. [5] showed that the trilateration graphs are uniquely localizable

and the node locations are easily be computed. Aspens et al. also showed that the random

geometric graphs are trilateration graphs if a node density or the communication radius is

reached.

2.4.2 Distance Matrix Completion Approach

A distance matrix completion approach is proposed by Zamilur et al. [23] based on the

result of Bakonyi and Johnson. This approach includes the generation of a chordal graph,

computing simplicial ordering of the graph, finding the maximal clique and the distance

matrix completion. Once the distance matrix is completed the end coordinates are generated

by using the traditional Young and Householder’s method.

Computing a chordal graph sequence

Based on the result produced by Grone et al. in [14], chordal graph sequence is generated

in this paper. The theorem is as follows,

Theorem 1 [14] G has no minimal cycles of length exactly 4 if and only if the following

holds: For any pair of vertices u and v with u 6= v, {u, v} /∈ E, the graph G + {u, v} has a

unique maximal clique which contains both u and v. (That is: if C and C ′ are both cliques

in G+ {u, v} which contain u and v, then so is C ∪ C ′.)

Simplicial ordering computation

The simplicial ordering of a graph, α of G can be found by a breadth-first search of G when

the vertices are labeled in the lexicographic order. A well-known LEX-BFS [24] algorithm is

used to compute the simplicial ordering of the vertices.
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Algorithm 2 Simplicial Ordering

1: Empty label list, (), is assigned to all the vertex in V
2: for i = n to 1 do
3: Pick a vertex v ∈ V with the largest label list in lexicographical order
4: Set α(v) = i
5: For each unnumbered vertex w adjacent to v, add i to the label list of w
6: end for
7: return α

Consider the following chordal graph for the simplicial ordering (Fig. 5) The vertices in

the chordal graph are labeled in lexicographical order.

FIGURE 5: A chordal graph on five vertices

By following the algorithm above, the simplicial ordering of the chordal graph is computed

and shown in the table below,

u v w x y
Step 0 () () () () ()
Step 1 () (5) (5) () ()
Step 2 () (5) (5,4) (4) (4)
Step 3 () (5) (5,4) (4) (4,3)
Step 4 () (5) (5,4) (4,2) (4,3)
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Distance matrix completion of a clique

To find a maximal clique, the algorithm designer is starting with a clique that has two

vertices of the given edge, add a vertex to the clique by examining if it is adjacent to every

other vertex in the clique; otherwise, discard the current vertex and move on to the next.

Distance matrix completion approach starts with the completion of a clique with one

edge missing in [23]; this theorem is formulated as the partial distance matrix completion

with one missing entry. The lemma proposed is as follows,

Theorem 2 This theorem is based on Bakonyi and Johnson’s results in [6]

The partial distance matrix admits at least one completion to a distance matrix F.
0 D12 x

Dt
12 D22 D23

x Dt
23 0


If  0 D12

Dt
12 D22


and D22 D23

Dt
23 0


has embedding dimensions as p and q respectively then x can be chosen so that the em-

bedding dimension of F is s=max{p,q}.

This result is equivalent to finding the completion of the partial distance matrix:
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0 1 1 et 1

1 0 d12 D13 d14

1 d12 0 D23 x

e D
t

13 D
t

23 D33 D34

1 d14 x D
t

34 0


to a matrix in which the Schur complement

a B x− d12 − d14
Bt C D

x− d12 − d14 Dt f


of the upper left 2× 2 principal matrix has a positive semidefinite completion of rank s.0 1

1 0


Theorem 3 shows that the solution for x exists. [12]

Let

R =


a B x

Bt C D

x Dt f


is a real partial positive semidefinite matrix.

The rank of

 a B

Bt C

 = p and rank of

C D

Dt f

 = q

Now the real positive semidefinite completion F of R shows that the rank of F is a

maximum of {p, q}. The completion shown here is unique iff rankC = p or rankC =q.

Once the distance matrix is completed using the distance matrix completion approach,

the completed distance matrix is used as an input to the SPE and compute the coordinates.

To compare our results, coordinates are also computed using the Young and Householder’s

method.
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2.5 SPE Approach for Distance matrix completion

The distance query graph presented to the adversary is chordal. Once the chordal graph

is computed after the edge lengths returned by the adversary, the remaining distances are

uniquely determined using both the distance matrix completion approach proposed by Za-

milur et al. [23] and the Stochastic Proximity Embedding (SPE) heuristic. The coordinates

out of the completed distance matrix are computed using SPE.

Stochastic proximity embedding takes R = [rij] as a input distance matrix. The R matrix

can either be complete or partial distance matrix. In the next step, SPE produces a random

number of points equal to the size of the original embedding and computes the distance

matrix D = [dij].

Now SPE starts refining the point by iteratively selecting a random pair; the refinement

starts adjusting the coordinates based on the Newton-Raphson method of root-finding so

that their respective distances match closely. This adjustment is driven by the learning

rate parameter that decreases during simulation to avoid the oscillatory behavior. In our

approach, we kept ε = 0.0001, and the learning rate parameter goes from 1 to 0 decrementing

by 0.001.

Algorithm 3 SPE

R = [rij] as a input distance matrix, select an initial learning rate λ
for (C cycles) do
for (S steps) do
Select a pair of points, pai and paj , at random and compute their distance dij = ||pai − paj ||.
if (dij 6= rij) then

pai ← pai + λ1
2

rij−dij
dij+ε

(pai − paj ), ε 6= 0

paj ← paj + λ1
2

rij−dij
dij+ε

(paj − pai ), ε 6= 0

end if
Repeat Step 2 for a prescribed number of steps, S
Decrease the learning rate λ by prescribed decrement δλ
Repeat Steps 2-4 for a prescribed number of cycles, C

At the end of this algorithm, the approximate distance matrix D = [dij] is completely
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refined towards the original distance matrix R; the respective initial random points are also

refined towards the original embedding; thus these points are the final coordinates produced

by SPE.

While generating the coordinates using SPE, the values of the coordinates are translated

to the highest position. We used the geometric transformation to bring back the layout

close to the original layout without altering the structure of the layout. The Geometric

transformation is carried out using the Kabsch method.

The summary of the approach used in this problem is this; we are using the using the

distance matrix completion approach proposed by Zamilur et al. [23], based on the result

produced by Bakonyi et al. [6]. Bakonyi and Johnson showed that if the distance graph

corresponding to a partial distance matrix is chordal, then there exists a completion of

the partial distance matrix. Once the distance matrix is completed, we are computing

the coordinates using SPE. In the original method of completing the graph using Distance

matrix completion approach based on a result by Bakonyi and Johnson, coordinates are

generated using the traditional Young and Householder’s method [30]. We also approached

this problem by skipping the DMCA and input the partial distance matrix into SPE. The

result of both SPE with partial distance matrix and the SPE with complete distance matrix

and Young and Householder’s method is compared at the end of this problem.

The main difficulty we faced while generating the coordinates using SPE is that the

coordinates are transferred to the highest position. We discussed this problem further in

this thesis and proposed the solution to overcome this problem.

2.6 Difficulties in SPE

In SPE, the improvisation of the final embedding depends upon the parameters used inside

the algorithm. From the study of our experiments, the learning rate parameter λ differs
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and improves the points embedding. The decrement we are using here for the λ affects the

learning cycle. Some pointsets are tending to learn quickly, and the other needs more steps

to learn the original point positions. We have tested our λ decrement from 0.01 to 0.5. The

point set with more number of points and huge disparity over the original embedding took

more time to learn. While a point set with less number of points and less disparity with the

original embedding learned quickly and needed very few steps over λ.

So what happens when the learning cycle is more for a point set that learns quickly. This

will overfeed the point set and translate the final structure to highest range. An example

showed here will give us the clear picture of what translation and overfeeding do to the point

set (See Fig: 7).

The figure below (Fig.7) shows the layout produced by SPE, which represents the original

layout (Fig.6) but in the highest range. The structure produced by SPE is same as the

original embedding (Needs Rotation), but the range in which SPE produced the embedding

is from 94980 to -1.35e5. The original embedding lies in the range of 120× 120. This is the

result of the more number of learning cycles.
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Initial Layout

FIGURE 6: Initial Layout of 20 points with 0.01 as learning rate
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FIGURE 7: SPE Layout of 20 points with 0.01 as learning rate

The experiment on the learning rate parameter is discussed here,

Through our series of experiments, we have got the clue that when the learning cycle is

more, then the stress function is close to zero. However, when this learning cycle overfeeds

the point set, then the translation to the highest position takes place. Below Few charts

(See Fig. 8 and 9) shows that the increase in learning cycles, steadily decreasing the stress

function.
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FIGURE 8: Graph for 30 points with 0.01 as learning rate
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FIGURE 9: Graph for 50 points with 0.01 as learning rate
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2.7 Modified Version of SPE

Since the learning rate parameter λ depends upon the number of points, and the disparity

between the original and the approximate embedding, λ is hard to control. However, to

control the highest translation of the point set, we have proposed the new idea of using anchor

nodes. Since the Sensor Network Localization has some nodes fixed, we are taking advantage

of such fixed nodes and fixing the remaining tag nodes without altering the positions of the

anchor nodes.

The updated SPE algorithm is as follows,

Algorithm 4 Modified SPE

Initialize the coordinates of P r and select an initial learning rate λ
for (C cycles) do
for (S steps) do
Select a pair of points, pai and paj , at random and compute their distance dij = ||pai − paj ||.
if (dij 6= rij) then

if pai is Anchornode but paj is not then

paj ← paj + λ1
2

rij−dij
dij+ε

(paj − pai ), ε 6= 0

end if
if pai is not an Anchornode but paj is an anchornode then

pai ← pai + λ1
2

rij−dij
dij+ε

(pai − paj ), ε 6= 0

end if
if Both pai and paj is not an Anchor node then

pai ← pai + λ1
2

rij−dij
dij+ε

(pai − paj ), ε 6= 0

paj ← paj + λ1
2

rij−dij
dij+ε

(paj − pai ), ε 6= 0

end if
end if
Repeat Step 2 for a prescribed number of steps, S
Decrease the learning rate λ by prescribed decrement δλ
Repeat Steps 2-4 for a prescribed number of cycles, C

Here we are choosing some points as Anchor points and running against the SPE algo-

rithm. Now in SPE, while choosing the i and j at random, we are not updating the anchor

nodes if i and j turned out to be one of the anchor nodes. When we get one anchor node
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and the other one as the tag node, then we are only updating the tag node.

The figure (Fig. 11) shows the embedding of 20 points with λ = 0.001, for 20 points.

This embedding is reproduced by SPE with learning rate parameter λ = 0.001 and keeping

2,4,6 as the anchor nodes, for 20 points the learning cycle that goes from 1 to 0.001 is more

than what is required. Since we can complete the 20 point structure with the learning rate

parameter λ = 0.01 (Fig. 7) but that translates it to the highest range.

The figure (Fig. 11) shows the SPE embedding with the range same as the original

embedding shown above (Fig. 10).
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FIGURE 10: Initial Layout of 20 points with 0.001 as learning rate
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FIGURE 11: SPE Layout of 20 points with 0.001 as learning rate
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2.8 Comparison and Experiments: DMCA (YH’s) Vs.

SPE Partial Vs. SPE Complete

The solution to the point placement problem is generated using three different methods

as discussed earlier. The first set of coordinates are computed by completing the distance

matrix using SPE. To compare our method, we have also computed the coordinates using

SPE heuristics and Young Householder’s method after completing the distance matrix using

distance matrix completion approach due to Zamilur et al. [23].

To match the layout more precisely we carried out the geometric transformation for each

method and calculated the error functions for both before and after geometric transformation.

Results produced by the experiments showed that the geometric transformation reduced the

error function for all three approaches. (See Table 1,2,3)

To measure the difference in the layout produced by three methods, we have computed

the RMSD value for the Young Householder’s method, SPE method and the SPE with partial

distance matrix method. We also calculated the localization error and the stress function for

both the SPE approaches. (See Table 1,2,3) All three methods are tested with the vertices

number ranging from 4 to 30.

Root Mean Square Deviation (RMSD) measures the difference between the original layout

and the computed layout. RMSD is calculated using the follwing formula,

RMSD(p, q) =

√√√√ 1

n

n∑
i=1

((pix − qix)2 + (piy − qiy)2) (1)

where,

Stress function is proposed for SPE to measure the quality of the final layout with respect

to the original layout. Stress function in SPE is finding the average of the difference between
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the initial R matrix and the computed final D matrix. [2]

S =
Σi<j

(dij−rij)2
rij

Σi<jrij
(2)

Localization error otherwise called as point placement error is similar to the RMSD error

calculation. Localization error measures the deviation between original point set and the

generated point set in the embedding. [4]

PPE(p, q) =

∑n
i=1((pix − qix)2 + (piy − qiy)2)

n
(3)

In the figure (12,13,14,15) we displayed the embedding of the final coordinates between

all three methods. The embedding shown here is a perfect embedding with all three methods

are plotting the same layouts. The initial layout generated in this example is with 22 vertices

and 230 edges.

Vertices edges YH RMSD Before Rot YH RMSD After Rot and Trans

4 5 2061.38613755 332.718947801

5 9 2202.6379561 673.471908531

5 8 2184.59522219 424.666372119

5 7 2650.76500519 124.592855294

6 14 1721.47354557 978.613392827

6 13 2315.06013063 5.57342161115E-13

6 12 2347.68434379 4.81494292504E-13

6 11 2601.95709906 128.108823309

7 20 1412.12093121 2.97702022503E-13

7 19 2669.52612392 4.73031519081E-13

7 18 2093.8180598 1393.31680012

7 17 1960.70123927 4.28081464929E-13

7 16 2144.07021047 4.38731885205E-13

7 15 1790.96523847 4.09586882105E-13

7 14 3125.99749455 6.23799407748E-13

8 27 2120.4228321 5.61643470444E-13

8 26 2937.24305761 896.606749692

8 25 2633.56828993 5.55951448917E-13
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8 24 1879.95145333 6.16106521486E-13

8 23 2026.02999528 3.34710128792E-13

9 35 1974.59164777 3.70846133555E-13

10 44 3234.44076753 5.58397991437E-13

11 54 2608.67450477 4.89510925586E-13

11 53 3179.822133 5.36396664224E-13

11 52 3239.46433154 5.50984128278E-13

12 65 1889.3397251 8.78311012489E-13

12 64 1973.50863097 3.64950916711E-13

12 63 2995.28074733 1047.95976145

13 77 2005.28703062 5.3937923582E-13

13 76 2443.41425433 9.62375391148E-13

13 75 1855.65567995 1382.31670742

13 74 2883.51031415 5.48291421452E-13

14 90 1919.89125929 1336.18953834

15 104 3283.52995888 857.261738235

15 103 2230.62648667 5.88542166294E-13

17 135 2107.30234718 1172.11118029

17 134 2325.53513206 4.40644345245E-13

17 133 1766.74154046 5.58610690181E-13

18 152 1422.03923007 6.89913864166E-13

19 170 1992.917449 1176.21850955

19 169 1253.8446116 0.0000143580349942

20 189 2713.91084952 1.98613675909E-09

20 184 2002.66972301 1505.67912217

21 209 1255.39526647 9.06812995979E-13

21 208 3145.88993828 1.03290995258E-12

22 230 2339.99609327 4.07399115844E-13

22 228 1821.37130433 1347.60033124

23 252 1827.1580246 1225.90586641

23 251 2184.95489304 6.61271298836E-13

24 275 2639.50660174 1075.60235797

25 299 2778.85977602 6.80704391007E-13

25 298 1861.23667694 1149.65002139

26 324 2476.90641913 7.70174674996E-13

26 323 3345.33431099 1.04990677077E-12

27 350 1492.15551103 4.01073361196E-13
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28 377 2021.86398081 1102.61923649

29 405 2676.49811892 0.000000119304199898

30 434 2186.3878422 3.35898384949E-13

33 527 3202.94547 8.61732322337E-13

TABLE 1: Experimental results using Young Householders

Vertices edges RMSD Before Rot RMSD After Rot and Trans StressFunction LocalizationError

4 5 18043.260152 67.2144473019 1.07103318596E-27 4517.78192609

5 9 117260452730 673.471904629 2.84983750253E-22 453564.406325

5 8 30401178927.5 0.00000370931260326 1.01424435643E-23 1.37589999887E-11

5 7 1230539981.32 124.592849684 9.49870959458E-24 15523.3781925

6 14 41750608.783 3.22401107721E-09 6.96968329184E-30 1.0394247426E-17

6 13 1880142605.42 0.000000252528984187 3.26540827395E-26 6.37708878544E-14

6 12 1423401766.2 0.000000137402902514 2.64089262974E-26 1.88795576193E-14

6 11 107474288.164 878.660965831 1.58628969938E-25 772045.092875

7 20 1253520759.85 0.000000127021714005 1.07370474862E-26 1.61345158287E-14

7 19 76032392.5475 6.65464511504E-09 2.57579499774E-28 4.42843016072E-17

7 18 8494026.95063 7.50369912643E-10 8.54721111598E-32 5.630550058E-19

7 17 324900589.069 2.66470171063E-08 9.65131375856E-28 7.10063520663E-16

7 16 1220199.0529 1.11842189295E-10 8.32146480343E-32 1.25086753062E-20

7 15 2016199056.8 0.000000249663404461 6.8084183608E-27 6.2331815527E-14

7 14 654977701.028 3.58895384598E-08 1.72752560113E-27 1.28805897086E-15

8 27 12203416.2153 1.12849172436E-09 7.95728107259E-31 1.27349357196E-18

8 26 794572.013269 8.39558702951E-11 1.64224128046E-32 7.04858815701E-21

8 25 2357052.27682 3.70809939166E-10 4.40815551039E-32 1.37500010985E-19

8 24 34043351824.5 0.00000346269968413 1.7891785023E-23 1.19902891025E-11

8 23 93009999.5542 8.12612467333E-09 1.63753302522E-28 6.60339022066E-17

9 35 71155828.5831 4.38971193676E-09 1.00841270257E-28 1.92695708877E-17

10 44 4229986.82734 4.50251440449E-10 2.88406102408E-31 2.02726359626E-19

11 54 1799657.80778 2.08211736013E-10 1.48427659001E-31 4.33521270135E-20

11 53 422169.060493 6.28122502494E-11 9.77056323021E-33 3.9453787814E-21

11 52 3586209.66932 3.70071972899E-10 2.57635145283E-31 1.36953265125E-19

12 65 3132707.81416 2.49125816766E-10 8.06741997844E-32 6.20636725792E-20

12 64 2108317.3026 4.88032892833E-10 4.80715744332E-31 2.38176104487E-19

12 63 1087075.44575 0.000000353280421341 6.85180608122E-25 1.24807056103E-13

13 77 1960694.58685 4.28761937495E-10 1960694.58685 1.83836799044E-19

13 76 799783.187959 2.35417015517E-10 5.71784552333E-32 5.54211711948E-20
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13 75 12851169.2444 1.67074435056E-09 2.54649749333E-30 2.79138668493E-18

13 74 48811374.0649 5.58594692648E-09 3.25228216205E-29 3.12028030654E-17

14 90 110840111.478 1336.18953834 1.28168087245E-28 1785402.48236

15 104 4971815.15998 0.000000095807194256 5.65828771036E-27 9.1790184712E-15

15 103 19082002.0952 1.79471706942E-09 3.66420584578E-30 3.22100935925E-18

17 135 1172.11118029 4.86786055487E-11 9.59141279618E-33 2.36960663817E-21

17 134 1239407.41191 1.57878955627E-08 2.69477369691E-28 2.49257646298E-16

17 133 81216598.0597 1.81133827455E-08 7.34479015195E-29 3.28094634486E-16

18 152 108727967.413 108727967.413 0.0000300756802658 46883.853731

19 170 3593977.78682 1.11830982222E-09 1.57337137176E-30 1.25061685847E-18

19 169 37337749.6678 22.4756510155 2.59568875049E-10 505.154888569

20 189 543818.408049 0.000000014400899914 2.47248417024E-27 2.07385918334E-16

20 184 43503204.2272 7.53211266093E-09 9.85438981199E-29 5.6732721137E-17

21 209 765367.835956 683.145241831 0.0007499345183 466687.421436

21 208 4259591.90917 0.47317370069 2.23715854946E-13 0.223893351024

22 230 6026680.76882 0.00147281265794 2.27632990959E-18 0.00000216917712538

22 228 1476638.90224 1347.60033124 7.46458354085E-31 1816026.65275

23 252 13113616.0313 0.000325732698814 1.38788410398E-19 0.000000106101791077

23 251 27549165.3342 6.2121943512E-09 2.52765601352E-29 3.85913586571E-17

24 275 14815753.7909 34.8381020592 1.26328187054E-08 1213.69335509

25 299 185799.642173 0.00369625794304 1.04843704534E-17 0.0000136623227815

25 298 4692133.25034 0.0365003333586 9.39914937104E-16 0.00133227433529

26 324 6309108.56324 1.61851733105 5.24165726042E-12 2.6195983509

26 323 2318986.54327 0.000000969851631606 4.48374916545E-25 9.40612187329E-13

27 350 4009822.91794 4.08266753546 1.3308693632E-11 16.6681742051

28 377 2862562.13634 7.31706445571E-10 3.89183384839E-31 5.3539432249E-19

29 405 21081460.7683 1117.89427484 1.46550922029E-26 1249687.60973

30 434 9701412.68314 0.301698010098 7.3270234131E-14 0.0910216892974

33 527 103497964.83 13.7797668849 1.66105871749E-10 189.881975402

TABLE 2: Experimental results using SPE with Complete distance matrix

Vertices edges RMSD Before Rot RMSD After Rot and Trans StressFunction LocalizationError

4 5 151716561583 447.53971618 1.45940642725E-08 200291.797558

5 9 63082137493.9 218.182826821 9.86929916464E-08 47603.7459198

5 8 182076180.074 214.943162064 0.000000825996971301 46200.562918

5 7 1565701696.72 220.033728419 0.0000003495825959 48414.8416419

6 14 1030166048.59 378.914086537 0.000000298807101868 143575.884976
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6 13 1990608368.62 713.2369954 0.000000702661662933 508707.011607

6 12 188053348561 903.473784069 0.00000255635079899 816264.878499

6 11 28078410400.1 1092.40333631 0.0000010595213126 1193345.04918

7 20 30011934.6184 318.688834035 0.00000246357429019 101562.572939

7 19 5661286554.02 428.021783801 2.53839638228E-08 183202.647408

7 18 15604812.3723 1392.37641491 4.76273182696E-09 1938712.08079

7 17 1972392.7611 198.050289033 0.000000969798180351 39223.9169859

7 16 181668386.057 965.932099529 0.00000543690190933 933024.820901

7 15 4567403.53195 1344.50969055 2.66752040989E-08 1807706.30799

7 14 48902694.292 1366.51651125 0.00000036027510582 1867367.37553

8 27 3399860.58067 1053.12349407 0.000000028757641283 1109069.09376

8 26 237629108670 444.510525774 7.07463431011E-08 197589.607524

8 25 10151433.3375 1277.71324699 0.000000040292921175 1632551.14154

8 24 18570360.9301 1034.88711306 0.00000175796309786 1070991.33677

8 23 6894762.42834 868.401794764 0.0000236895672642 754121.677149

9 35 89657071.2847 510.622146958 9.89879381772E-09 260734.976964

10 44 5239487.51836 8.2381606773 2.09504908209E-10 67.867291345

11 54 15823092.5722 43.7650979351 1.60225150191E-08 1915.38379727

11 53 14533318.5163 265.699905269 4.70144893691E-08 70596.4396599

11 52 2040373.3106 738.603366932 0.00000244318789575 545534.933643

12 65 523602.748023 1117.1672964 1.33170679218E-09 1248062.76815

12 64 3925140153.81 762.178935519 0.0000131058237785 580916.729749

12 63 799995057.166 1085.62835938 3.11404774542E-08 1178588.9347

13 77 48552227.0725 1048.36217101 3.53973975995E-08 1099063.24161

13 76 27718246.2301 1296.47751865 6.81733894244E-08 1680853.95637

13 75 4255397.55139 248.781245178 0.00000510377354543 61892.1079521

13 74 984654.936116 234.080352689 0.000000731958485155 54793.6115149999

14 90 27809990.0635 16.4468275582 8.0732739609E-10 270.498136731

15 104 4543765.12073 172.855176775 0.000000110988511949 29878.9121379

15 103 1408879155.63 1074.39618261 0.000000809554377008 1154327.15722

17 135 17942836.1809 1.82901048341 1.89048375528E-11 3.34527934843

17 134 12984840.0703 33.738980696 4.90122953996E-09 1138.3188184

17 133 24230435.7011 1250.06200449 0.0000357565881358 1562655.01506

18 152 2560648736.25 455.200692716 0.000000274889950081 207207.67065

19 170 3667301.99917 39.1907401583 6.28887091454E-09 1535.91411415

19 169 611245.401946 95.7337519462 3.49251932534E-08 9164.95126169

20 189 16317030.162 842.813221713 0.0000161423609422 710334.126694
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20 184 11246377.5751 98.5656322344 2.97676589802E-08 9715.18385777

21 209 7882585.64085 5.96272819745 1.04865425194E-09 35.5541275567

21 208 1199791.95927 1153.01709326 2.69750872567E-08 1329448.41735

22 230 46268545.4521 0.74031023198 1.25198589858E-12 0.548059239574

22 228 11912594.9573 40.0911446337 1.64296544414E-08 1607.29987804

23 252 10347392.1173 1226.77007179 3.17758913889E-09 1504964.80904

23 251 29324633.4087 48.6902930533 1.10036558529E-08 2370.74463762

24 275 2422208.71519 40.382669602 0.000000030204515818 1630.76000418

25 299 83703247.2669 28.5757352436 1.73490847501E-09 816.572644712

25 298 4992171.22977 76.7177559965 0.000000025162310443 5885.61408514

26 324 418200163.297 10.0017692178 1.11647614028E-09 100.035387487

26 323 2391878098.21 74.1028457574 2.85547736168E-08 5491.23174934

27 350 21718647.8309 1271.83305156 2.60341881589E-09 1617559.31104

28 377 2666430.00197 47.2384964679 5.05523225628E-09 2231.47554855

29 405 1998787.8662 6.52573408417 2.99165833797E-10 42.5852053373

30 434 132581685.649 1222.62243382 0.0000273945141536 1494805.61567

33 527 472414526.944 20.9523650525 2.45922847911E-09 439.001601294

TABLE 3: Experimental results using SPE with Partial distance matrix

To compare the layouts created by three approaches, we have plotted the layouts to check

each method, here are the few images to verify the final results.

33



www.manaraa.com

0 500 1000 1500 2000 2500
500

0

500

1000

1500

2000

2500

3000

0

1

2

3

4
5

6

7

8

9

10 11

12

13

14

15

16

17
18

19

20

21

FIGURE 12: Initial Layout with 22 Vertices
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FIGURE 13: Initial Layout Versus SPE (Complete distance matrix)
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FIGURE 14: Initial Layout Versus SPE (Partial distance matrix)
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FIGURE 15: Initial Layout Versus Young and Householder’s approach

2.9 Discussions

Point placement on a plane has thrown up many open problems. While we used chordal

graphs in our approach, the extension to other classes of the graph remain open.

We can also use SPE to approach other graphs since SPE is graph independent. There
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FIGURE 16: Initial Layout Vs Young and Householder’s approach Vs SPE(Partial matrix)
Vs SPE(Complete matrix)

is plenty of potential in Stochastic Proximity Embedding, to explore the point placement

problems. The theoretical proof of SPE is still not clear and produces different results time

to time. In SPE, the learning rate parameter can be controlled with respect to the number

of points and the disparity between the point sets.

36



www.manaraa.com

CHAPTER 3

Point Placement problem in 3D

Space with Degree of Freedom

Approach

3.1 Molecular Distance Geometry Problem

The Molecular Distance Geometry Problem (MDGP) is defined as the problem of finding

cartesian coordinates x1...xN ∈ R3 of the atoms with only a subset of interatomic distances,

such that

||xi − xj|| = d(i, j); ([i, j] ∈ S) (1)

In equation (1) S is the set of pairs of atoms [i,j] whose Euclidean distances d(i, j) between

all the points are known. The problem can be solved in linear time if the distance between

all the pair of points is available [7, 11].

The distances are obtained through the NMR experiments or can be produced with our

knowledge of bond lengths and bond angles. If all the distances are given, then the problem

can be solved by factorizing a distance matrix formed by the given distances. We can use
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the eigenvectors to find the coordinates of the points if the distances are consistent and if we

can find the three non-zero eigenvalues of the matrix [9]. Also, to get the 3D coordinates,

the rank of the distance matrix should be less than or equal to three.

In practice, we cannot usually get the exact distances between all pairs of atoms in the

protein. Even NMR experiments can detect only the short-range distances between atoms

that are close to protein backbones. Saxe [25] showed that the problem is NP-hard when

the exact distances between the pair of points are not known [25]. EMBED algorithm from

Crippen and Havel is proposed to solve this problem by estimating the missing distances to

build the full set of distances. By estimating the remaining distances, we can now solve the

problem with the singular value decomposition [9].

The main motivation behind studying this problem is to determine the structure of the

protein molecules. Since NMR experiments can detect the short-range distances between

atoms of a protein molecule, we are computing the structure of the whole protein molecule

using only the distance between few pairs. Determined structure of a protein molecule will

give us a clue about its functionalities.

Determination of the three-dimensional structure of a molecule using a set of distances

between pairs of atoms is the goal of the Molecular Distance Geometry Problem (MDGP).

To test the algorithms designed to solve MDGP, we have created the artificial backbone

chain of a protein molecule using Philips model [17].

3.2 Prior Work

Molecular Distance Geometry Problem (MDGP) has been extensively studied and solved

in different forms [26]. More and Wu proposed a continuous approach to solve the MDGP.

The discretizable version of the same problem is proposed by Lover et al. [16] is called the

Discretizable Molecular Distance Geometry Problem (DMDGP).
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3.2.1 More and Wu’s approach

Different approaches have been proposed to solve the Molecular Distance Geometry Prob-

lem. More and Wu formulated the DGP as a continuous global optimization problem. The

problem is to find the position of the atoms in a molecule with only the distance di,j between

some pairs (i, j) of atoms in a set S of the atom pairs. [18]

||xi − xj|| = d(i, j); ([i, j] ∈ S) (2)

The set of constraints in the equation (2) is replaced by the penalty function. The

penalty function calculates the disparity between the computed and the known distances.

The penalty function is calculated using different approaches, one common method to calu-

culate the penalty function is the Largest Distance Error (LDE): [19]

LDE({x1, x2, ...xxn}) =
1

m

∑
{u,v}

|||xu − xv|| − duv|
duv

(3)

m is the number of known distances.

In More and Wu’s approach, the global continuation approach is used to determine the

global solution to this problem. The continuation approach is shown to find the global

solution irrespective of the starting position.

3.2.2 Discretizable Distance Geometry Problem

The DMDGP is inspired by the protein molecules; protein molecules are formed by amino

acids and bound together forming a sort of chain. The atoms in the protein backbones which

are close in a sequence are also close in the 3D conformation of the protein structure. Since

NMR techniques can detect the short-range distances between the atoms, such distances are

used to define the whole structure of a protein molecule [19].
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To qualify as the DMDGP, the following assumptions needs to be satisfied,

Let G = (V,E, d) be a weighted undirected graph, with total order relation on the

vertices. The two important assumptions are,

• Each quadruplet of E is a clique of consecutive vertices

• Triangle inequality must hold between every three vertices

When these assumptions satisfy, there are at least three lower level atoms connected to

the current atom. The intersection of this three points can either be a circle, two points or

only one point. With the triangle inequality in place, the intersection of three points cannot

be a circle. Because the three points cannot be aligned by satisfying the triangle inequality.

Since the intersection of three points is rarely one point only, they have taken two possible

positions for every atom.

Now with the two possible position, the binary tree is constructed. For every iteration,

two new positions are added to the binary tree after passing the feasibility test. Feasibility

test is just to test the agreement of the two possible position with the other available distances

if any such distance available other than the three distance used to compute the two possible

position. When a possible position is not agreeing with the other available distances, then

that branch is pruned out of the tree. This pruning phase reduces the binary tree quickly, and

the remaining branch is explored through an exhaustive search, which is not too expensive.

[19]

3.2.3 Crippen and Havel’s Approach

Crippen and Havel [15], proposed a solid algorithm to solve the molecular distance geometry

problem using the upper and lower bounds of distances instead of exact distances.

In the first step of the algorithm the given distance bounds are converted to distance

limits. This process is termed as bound smoothing. The Floyd’s algorithm presented by Dress
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and Havel has been used to convert the bounds to limits. The limits that are calculated using

Floyd’s algorithm should satisfy the triangle inequality. The limits that satisfy the triangle

inequality is termed as triangle inequality limits.

For given three points u,v,w the lower bounds and upper bounds are denoted like this,

lu,w, uu,v, uu,w, lvw

Geometric set of rules are used for the bound smoothing, the upper and lower bounds of

the three given points should satisfy the following geometric rules.

lu,w = max(lu,w, lu,v − uvw, lvw − uu,v) (4)

uu,w = min(uu,w, uu,v + uv,w) (5)

In the next step of the algorithm, the distance limits are converted into distances, this

process of converting limits to distances is called Metrization. In this process of metrization,

one random distance is selected between the upper and lower bound. Once the random

number is selected, the upper and lower limits been set to this number and recompute the

triangle inequality limits.

In the next step of the algorithm, the coordinates are computed using the series of steps,

• The distance for each point is calculated from the center of mass.

• Where dij is the distance between the points i,j

• In the metric matrix A, each elemnt aij is computed form the origin

• B matrix is calculated like this, B = W A W

• where W is the matrix of weights, assumed to be 1 in this case
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• Gale and householder showed that if B matrix is semi defininte then the coordinate

matrix X is obtained like this, X = σ
√
L

• Where L2 = [λ1
2, λ2

2, ...λr
2, 0, ...0]

3.2.4 Philips Model

Philips model of instance creation is based on the method proposed by Philips et al. [22].

Philips model considers a molecule as being the chain of N atoms with Cartesian coordinates

given by x1, ..., xN ∈ R3.

θij

i j

k

l

rij

FIGURE 17: Philips Model

For every pair of consecutive atoms i,j,k,l :

• ri,j be the bond length which is the Euclidean distance between them.

• θi,k be the bond angle corresponding to the relative position of the third atom with

respect to the line containing the previous two.

• ωi,l be the torsion angle between the normals through the planes determined by the

atoms i,j,k and j,k,l

In most conformation calculations, all bond lengths and bond angles are assumed to be

fixed at their equilibrium values r0i,j and θ0i,j, with regarding this we can fix the first three

atoms in the chain;
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We can always fix the first atom at origin x1 = (0, 0, 0), and the second atom is positioned

at the distance of r12 from origin, i.e. x2 = (−r12, 0, 0), and the third atom is fixed at

x3 = (r23cos(θ13) − r12, r23sin(θ13), 0). With the torsion angle ω14 fourth atom in the chain

is determined. With both ω14 and ω25 the fifth atom in the chain is determined, by fixing

another torsion angle ω36 the sixth atom in the chain is determined.

In Philips model the bond length and bond angles are set to rij = 1.526◦ and θij = 109.5◦

respectively. The three preferred torsion angles at 60◦, 180◦ and 300◦ are also specified in

the Philips model. With these three parameters, torsion angle, bond length, and bond angle

we can generate the distance between pairs of atoms and obtain instances for the Molecular

Distance Geometry Problem.

The torsion angle values are seen as perturbations of the preferred torsion angle 60◦, 180◦

and 300◦. Based on the model described in Philips, we are generating the torsion angle by

adding the random value from the set {ω + i : i = −15◦, ..., 15◦} to the random value out of

the three preferred torsion angle.

We are generating the cartesian coordinates to define the set S in (1), (xn1, xn2, xn3) is

defined as the cartesian coordinates for each atom in the chain using the following matrices,

[22] 

xn1

xn2

xn3

xn4


= B1B2...Bn



0

0

0

1


(n = 1,...,N),

The matrix to calculate the cartesian coordinates is proposed by Philips et al. [22]

Where
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B1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, B2 =



−1 0 0 −r12
0 1 0 0

0 0 −1 0

0 0 0 1


,

B3 =



− cos θ13 − sin θ13 0 −r23 cos θ13

sin θ13 − cos θ13 0 r23 sin θ13

0 0 1 0

0 0 0 1


Bi =

− cos θ(i−2)i − sin θ(i−2)i 0 −r(i−1)i cos θ(i−2)i

sin θ(i−3)i cosω(i−3)i − cos θ(i−2)i cosω(i−3)i − sinω(i−3)ir(i−1)i sin θ(i−2)i cosω(i−3)i

sinθ(i−2)i sinω(i−3)i − cos θ(i−2)i sinω(i−3)i cosω(i−3)ir((i− 1)i) sin θ(i−2)i sinω(i−3)i

0 0 0 1


Once the cartesian coordinates for all the atoms are determined, the set S is generated

with the cutoff value d, which in terms fetching the atoms i,j if their distance is within the

cutoff value d. Cutoff value selection is defined as,

S = [i, j] : ||xi − xj|| ≤ d

A sample molecular chain created by the Philips model is shown here, (Fig. 18)

3.3 Overview of our results

We proposed the Degree of freedom (DoF) approach to fetch the partial distances out of a

molecular chain and construct the whole chain of a molecule. For each atom, if the distance

between the adjacent atom and the next atom is known, then we are completing the layout
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by constructing the chordal graph with the partial distances. This gives us the freedom to

use DMCA due to Zamilur et al. and the SPE due to Agrafoitis to complete the remaining

distances and solve the Molecular Distance Geometry Problem (MDGP).

With the available distances, the partial distance matrix is computed and is completed

using both DMCA and SPE. One the distance matrix is completed then the coordinates are

generated using SPE.

We tested our DoF approach with the artificial instance created using the Philips model

and obtained good results out of it. In addition to the artificial instances, we have also

compared our approach with the Md-Jeep approach due to Carlie Lover et al. [19]. Synthetic

NMR datasets available with MD-Jeep are used while comparing the MD-Jeep with our DoF

approach.
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FIGURE 18: Protein Chain created using Philips Model
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3.4 Degree of Freedom Approach

Our Degree of Freedom (DoF) approach is proposed to complete the backbone chain of a

protein molecule by using only the partial set of distances. DoF approach is generated based

on the Philips model for instance creation. In Philips model, we are fixing the first three

points on a plane with the distances known between all three points. The degree of freedom

to fix n points is 3n since we are fixing the first point at origin, the DoF is reduced to 3n-3.

So the degree of freedom to fix n points by fixing the first point at origin is 3n-3. In

our approach we are considering the lost degree of freedom as distance constraints, so out

of 3n-3 DoF, we are choosing 2n-3 distance constraints to construct the whole chain of the

molecule.

The reason behind choosing 2n-3 distances is explained here,

In Philips model, since the bond length is fixed, we know the distance between the

successive atoms this gives us n-1 distance constraints. The bond angle for the third atom

with respect to the line containing the previous two atoms is also fixed, this gives us additional

n-2 distance constraints out of n atoms. In total we are taking 2n-3 distance constraints to

fix n atoms that has 3n-3 degrees of freedom.

In Philips model, the torsion angle is chosen randomly. In our case, we are complet-

ing the remaining distances using Distance matrix completion approach and the Stochastic

Proximity Embedding.

The algorithm for the degree of freedom approach with the necessary steps is described

here,
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Algorithm: Degree of Freedom Approach

Input: Chain of a protein molecule produced by Philips model
Output: Distance matrix with 3n-3 distances

1: Initialize the complete distance matrix with distances between all the atoms
2: for all combination of protein pair do
3: Pick n-1 distances between adjacent atoms
4: Pick n-2 distances between the current and the one after the adjacent atom
5: end for
6: Generate partial distance matrix with the 2n-3 distances
7: Use DMCA and SPE to find the structure of the molecule

By following the proposed algorithm, we created a sample distance matrix as partial R

Matrix and the original matrix as the R Matrix.

R Matrix =



0 2.3286 8.8393 18.9945 32.2019

2.3286 0 2.3286 8.1887 17.3396

8.8393 2.3286 0 2.3286 8.8393

18.9945 8.1887 2.3286 0 2.3286

32.2019 17.3396 8.8393 2.3286 0


Partial R Matrix as follows,

Partial R Matrix =



0 2.3286 8.8393 0 0

2.3286 0 2.3286 8.1887 0

8.8393 2.3286 0 2.3286 8.8393

0 8.1887 2.3286 0 2.3286

0 0 8.8393 2.3286 0


3.5 Coordinates computation using SPE

The degree of Freedom approach takes n-1 and n-2 distances between the adjacent atoms and

the atom next to the adjacent atom respectively. These distances will construct a partial
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distance matrix. Since the missing distances can be identified by SPE in the refinement

process, our initial idea is to use SPE as a tool to complete the partial distance matrix.

However, the layout produced by SPE was not good, which in turn SPE was not able to fix

remaining distances with the partial distance matrix produced by our Degree of Freedom

approach.

The distance matrix produced by DoF approach looks like this,

Partial R Matrix =



0 2.3286 8.8393 0 0

2.3286 0 2.3286 8.1887 0

8.8393 2.3286 0 2.3286 8.8393

0 8.1887 2.3286 0 2.3286

0 0 8.8393 2.3286 0


The partial distance matrix produced by DoF approach has only distances close to the

diagonal, and the other distances are unknown, SPE is very sensitive to the available distance

spread. If the available distances are only along the diagonal, the point set takes time to

learn and in fact could not get to the position. A simple experimental study has been carried

out and the results are as follows,

In the layout shown below (Fig. 20), the points along the straight line are not fixed as

the rest of the points were fixed by SPE. From the series of experiments, we studied that if

a point lies on a straight line without enough distances and the spread out distances, then

the SPE is struggling to learn the relative distances of the point set.

3.6 Distance matrix completion approach

The degree of Freedom approach takes n-1 and n-2 distances between the adjacent atoms

and the atom next to the adjacent atom respectively. These distances represent a chordal
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FIGURE 19: Initial layout of b

graph. A sample layout is generated using the partial distance matrix, to show the chordal

graph is below, (Fig. 21)

In practice, exact distances between all pairs of atoms are not available. Experimental

techniques such as NMR can determine the distances between pairs of atoms if they are

tightly placed. In general, NMR computes the distance between pairs of atoms which lies

close together.

To fix a molecule in 3D space, we need to estimate the remaining distances between

pairs of atoms. We considered this problem as a distance matrix completion problem since

the layout we are generating is also a chordal graph, we used the DMCA to complete the

distance matrix. Once the distance matrix is completed, the 3D coordinates are computed
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FIGURE 21: Chordal Graph Construction
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using SPE.

The input to the Distance matrix completion approach is a partial distance matrix that

represents a chordal graph. Since the DMCA approach can fill up the edges one by one by

completing the clique, we get the final layout with the complete distance matrix.

The output of the Distance matrix completion algorithm is a complete distance matrix.

Once the distance matrix is completed, then the coordinates are computed using SPE.

Difficulties With DMCA

The partial distance matrix that represents a chordal graph has been completed by the

distance matrix completion algorithm. In rare cases, when the point sets are more, DMCA

fails to complete the partial distance matrix because of the numerical errors. The floating

point values that add up to the distances and cause the numerical errors.

Completion using SPE

When the numerical errors cause DMCA to stop the distance matrix completion process,

then the partial distance matrix with the distances completed using DMCA and the original

2n-3 distances is transferred to the SPE in runtime and the remaining distances been com-

pleted. Since we have extra sparse distances generated through DMCA, and the original 2n-3

distances, now SPE can able to fill up the remaining distances and produce the coordinates

for the output layout.

The Input to the SPE is a distance matrix R = [rij]. R matrix is either a complete or

partial distance matrix with distances known between some pairs if it is partial matrix, or

all the pairs if it is a complete distance matrix in a set of n atoms P = p1, p2, ...pn. SPE

produces random point set P r = p1
r, p2, ...pn with the same number of points as the original

point set. The distance matrix for the random points are calculated as D matrix where
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D = [dij].

With both the original and the arbitrary embedding, SPE randomly picks up the pair

of points and adjust the arbitrary coordinates towards the original coordinates based on the

Newton-Raphson method of root finding. This refinement goes through C*S steps, where C

is the learning cycle that iterates over the learning rate parameter λ. In our case, λ goes

from 1 to 0 decrementing with minimal value. S loop goes for the number of times a random

pair is selected.

At the end of C*S steps, all the pairs in the arbitrary embedding are adjusted towards

the original embedding. The quality of this refinement is measured using the stress function

given by [2]

S =
Σi<j

(dij−rij)2
rij

Σi<jrij
(6)

3.7 Experiments with Philips Model

Artificial backbone chain of a protein molecule is developed using Philips model and tested

with our degree of freedom approach.

By fixing the bond length and the bond angle, but by randomly choosing the torsion

angle, we generated the chain of n atoms as a backbone of a protein molecule (Fig. 22)

using the model proposed by Philips et al. A sample chain of 6 atoms is produced and the

cartesian coordinates of that chain is given here.

Cartesian coordinates = ((0,0,0),(-1.526,0,0),(-2.8962,-0.6716,0),(-3.9072,-0.3790,0.4501),(-

5.2984,1.0028,-0.5148),(-6.3070,2.0598,-0.9553))

The protein chain is shown in Fig. 22 is recreated using DMCA + SPE with only 2n-3

distances.

The completed RMatrix out of Philips model and the Partial RMatrix with 2n-3 distances
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that we used as an input to complete the whole molecular chain is also displayed here.

RMatrix as follows,

RMatrix =



0 2.3286 8.8393 15.6129 29.3441 44.9342

2.3286 0 2.3286 6.0166 15.5019 28.0139

8.8393 2.3286 0 2.3286 8.8393 20.0072

15.6129 6.0166 2.3286 0 2.3286 8.8393

29.3441 15.5019 8.8393 2.3286 0 2.3286

44.9342 28.0139 20.0072 8.8393 2.3286 0


Now the partial distance matrix,

RMatrix =



0 2.3286 8.8393 0 0 0

2.3286 0 2.3286 6.0166 0 0

8.8393 2.3286 0 2.3286 8.8393 0

0 6.0166 2.3286 0 2.3286 8.8393

0 0 8.8393 2.3286 0 2.3286

0 0 0 8.8393 2.3286 0



3.8 MD-Jeep With NMR data

MD-Jeep is a Branch and prune based software proposed by Mucherino et al. [20] to solve

the Discretizable Molecular Distance Geometry Problem (DMDGP). DDGP is termed out of

Discretizable distance geometry problem, fixing the vertex position in order if the distance

between a vertex and the three preceding vertices are known.

An instance to qualify as a DMDGP needs to satisfy this two assumptions,

Let G = (V,E,d) be a weighted undirected graph.
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FIGURE 22: Protein Chain created using Philips Model

• 1,2,3 ∈ V should be a clique, and for each atom xi the distance between three preceding

and consecutive vertices must be known. i.e. There are edge exists between (i-1,i),(i-

2,i) and (i-3,i).

• For each triplet of consecutive atoms, triangle inequality on the corresponding distances

must hold.

Now with the position of the three preceding atoms are already known, the intersection

of three points can be a circle or two points or one point only. With the triangle inequality

condition in place, an intersection of three points cannot be a circle because three points

cannot be aligned. So they are assuming it to be two points for the maximum possibility. Now
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FIGURE 23: Original Protein Chain Vs Protein Chain produced by DMCA + SPE

with the possible position for each atom, xi became two points, a binary tree is constructed

with two possible positions. The same procedure is followed for all the atoms in a molecule.

At every iteration, two new positions are added to the binary tree. A Binary tree is built

as the search proceeds. Before adding a position to the binary tree, every position should

pass a feasibility test; feasibility test is to test the agreement of the two possible position

with other available distances. If a position is not agreeing with the other available distances,

then that position is not added to the tree and that the whole branch is pruned out of the

tree.

The pruning phase in the Branch and Prune algorithm reduces the binary tree quickly,

and the remaining branch is explored through an exhaustive search, which is not too expen-
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sive.

When all the assumptions are satisfied, the MD-Jeep software with NMR data is pro-

ducing a good layout. A sample layout out of MD-Jeep is shown in Fig. 24. The MD-Jeep

software has some synthetic NMR data’s which is created in a way to satisfy the assumptions

made in the paper [19].
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FIGURE 24: MD-Jeep Coordinates
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3.9 Md-Jeep Vs. DMCA + SPE using NMR data

To compare our method (DMCA + SPE with the degree of freedom approach), we have used

the synthetic NMR data found with the MD-Jeep software. Note that the NMR data used

here are produced by MD-Jeep authors to satisfy the assumptions made in solving DMDGP.
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FIGURE 25: MD-Jeep Coordinates
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FIGURE 26: Layout produced by DMCA Plus SPE

Figure 25 shows the layout produced by MD-Jeep software for the protein Id: 1crn We
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used the same NMR file with partial distances and computed the final structure using our

proposed approach. Fig. 26 shows the layout produced by DMCA + SPE for the protein

Id: 1crn

3.10 Discussions

In this chapter, we proposed an algorithm to solve MDGP using DMCA and SPE. The

degree of freedom approach is discussed that gives us the minimum distances to reconstruct

the whole chain of a protein molecule. The other algorithm DMDGP proposed by Lover et

al. to solve this problem is also reviewed in this chapter. The Philips model to create the

artificial backbone chain of a protein molecule is also explained in this chapter. In the end,

the results for the degree of freedom approach tested against the chain of n atoms produced

by Philips model is discussed, and the corresponding matrix is also displayed in this chapter.

Our approach is also tested against the MD-Jeep Software using the synthetic NMR data

found with MD-Jeep software.
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CHAPTER 4

Summary and Discussions

This thesis mainly contributes towards fixing the sensor network localization problem in

2-dimensional space and computing the structure of a protein molecule in 3-dimensional

space.

In chapter 1, we have given an prototypical problem by Saxe. Various versions of the

prototypical problem is explained in 2 and 3 dimensions.

In chapter 2, We have discussed the point placement problem in 2D. Our approach

towards the point placement problem in 2D is simple and contribute towards fixing the sensor

network localization. The nodes of the sensor network are fixed by knowing the position of

few nodes called anchor nodes. The idea we proposed here is simple and compatible with

very large networks as well. At the end of the second chapter, we also proposed a modified

version of SPE approach that uses the anchor nodes to fix the sensor networks. The modified

approach is just to avoid the issue of highest translation that SPE faces when we overfeed

the point set.

In chapter 3, the point placement problem in 3D is explained, our algorithm contributes

towards fixing the structure of a protein molecule. Degree of Freedom approach is proposed

to take the partial distances between the atoms and completing the whole structure of a

molecule. In Biology, determination of the structure of a protein molecule will give us a clue

about the functionality of the molecule. An Artificial backbone chain of a protein molecule
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is developed using Philips model. The experiments and results using the Philips model is

discussed in the chapter 3.

4.1 Open Problems

• Stochastic proximity embedding can be made more clear theoreticaly

• A theoretical proof of why and how SPE works would be a great area to explore

• Solving the distance matrix completion approach for other available graphs

• Distance matrix completion appraoch can be made more robust to handle more number

of floating point values

• Proof to show the relationship between Learning rate parameter λ and the points

disparity in SPE
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